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Abstract. The design of resilient supply chains under the risk of disruptions at candidate 

locations for distribution centers (DCs) is formulated as a two-stage stochastic program. The 

problem involves selecting DC locations, determining storage capacities for multiple 

commodities, and establishing the distribution strategy in scenarios that describe disruptions at 

potential DCs. The objective is to minimize the sum of investment cost and expected distribution 

cost during a finite time-horizon. The rapid growth in the number of scenarios requires the 

development of an effective method to solve large-scale problems. The method includes a 

strengthened multi-cut Benders decomposition algorithm and the derivation of deterministic 

bounds based on the optimal solution over reduced sets of scenarios. Resilient designs for a 

large-scale example and an industrial supply chain are found with the proposed method. The 
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results demonstrate the importance of including DC capacity in the design problem and 

anticipating the distribution strategy in adverse scenarios. 

 

1. Introduction  

Supply chain resilience has recently become one of the main concerns for major companies. 

The increasing complexity and interdependency of logistic networks have contributed to enhance 

the interest on this topic. A recent report presented by the World Economic Forum indicates that 

supply chain disruptions reduce the share price of impacted companies by 7% on average1. One 

interesting case of supply chain resilience happened in 2000 when a fire at the Philips microchip 

plant in Albuquerque (NM) cut off the supply of a key component for cellphone manufacturers 

Nokia and Ericsson. Nokia’s production lines were able to adapt quickly by using alternative 

suppliers and accepting similar components. In contrast, the supply disruption had a significant 

impact in Ericsson’s production, causing an estimated revenue loss of $400 million2. Similarly, 

the disruptions caused by hurricane Katrina in 20053 and the earthquake that hit Japan in 20114 

exposed the vulnerabilities of centralized supply chain strategies in the process industry. 

The importance of building resilient supply chain networks and quantifying the effect of 

unexpected events in their operation has been recognized by several studies5,6,7,8. They advocate 

for the inclusion of risk reduction strategies into the supply chain design. However, disruptions 

are often neglected from the supply chain analysis because of their unpredictable and infrequent 

nature.  

Disruptions comprise a wide variety of events that prevent supply chains from their normal 

operation. Regardless of their nature, disruptions produce undesirable effects: they shut down 

parts of the network and force rearrangements of the logistic strategy that can be very expensive. 
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Furthermore, the current paradigm of lean inventory management leads to reduced supply chain 

flexibility and increased vulnerability to disruptions. In order to implement reliable networks that 

consistently deliver high performance, the value of supply chain resilience must be considered 

during their design9,10. 

Traditionally, the mathematical formulation of the supply chain design has been based on the 

facility location problem (FLP)11,12. The FLP implies selecting among a set of candidate 

locations the facilities that offer the best balance between investment and transportation cost to a 

given set of demand points. The supply chain design problem has a broader scope. It also 

includes the role of suppliers, inventory management, and timing of deliveries.   

This paper addresses the design of multi-commodity supply chains subject to disruptions risk 

at the distribution centers (DCs). The problem involves selecting DC locations, establishing their 

storage capacity, and determining a distribution strategy that anticipates potential disruptions. 

The goal is to obtain the supply chain with minimum cost from a risk neutral perspective. The 

cost of the supply chain is calculated as the sum of investment cost and expected distribution cost 

over a finite time-horizon. 

The benefits of flexibility in capacitated manufacturing networks with uncertain demand have 

been recognized in previous research studies13. Similar benefits can be expected in distribution 

networks with disruptions but their assessment requires the consideration of capacity constraints. 

Unlike previous work, this research considers DC storage capacities as design variables that 

impact investment cost and inventory availability. This approach follows from the intuitive 

notion that supply chain resilience requires backup capacity. The goal is to demonstrate that 

significant increases in network reliability can be obtained with reasonable increases in 

investment cost through appropriate capacity selection and allocation of inventories. 
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In order to establish the optimal amount of inventories at DCs, demand assignments under the 

possible realizations of disruptions must be anticipated. Therefore, the problem is formulated in 

the context of two-stage stochastic programming with full recourse13. The first-stage decisions 

comprise the supply chain design: DC selection and their capacities. The second-stage decisions 

model the distribution strategy in the scenarios given by the potential combinations of active and 

disrupted locations. The solution of large-scale problems requires the development of specialized 

algorithms given the exponential growth in the number of scenarios with the increase in 

candidate DCs. Different versions of Benders decomposition14 that exploit problem structure are 

presented. 

The remaining of the paper is organized as follows. Section 2 reviews the relevant 

contributions to the design of resilient supply chains. Section 3 formalizes the problem 

statement. Section 4 describes the mathematical formulation of the problem. Section 5 illustrates 

the model with a small example. In section 6, the solution method for the design of large-scale 

resilient supply chains is developed. Section 7 discusses some issues related to the 

implementation. Section 8 demonstrates the implementation of the solution strategy in a large-

scale example. Section 9 formulates the design problem for a resilient supply chain from the 

process industry and presents its results. Finally, conclusions are drawn in section 10. 

 

2. Literature review 

Facility location problems have received significant attention since the theory of the location 

of industries was introduced by Weber & Friedrich11. In the context of supply chains, Geoffrion 

& Graves12 proposed a Mixed-Integer Linear Programming (MILP) formulation that contains the 

essence of subsequent developments. Several authors have continued proposing different 
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versions of this formulation. Owen & Daskin16, Meixell & Gargeya17, and Shen18 offer 

comprehensive reviews on facility location and supply chain design. The main developments in 

supply chains design and planning for the process industry are reviewed by Shah19 and by Laínez 

& Puigjaner20. A review of the FLP under uncertainty is presented by Snyder21. Additionally, the 

design of robust supply chains under uncertainty is reviewed by Klibi et al.22 

Most recent efforts have included inventory management under demand uncertainty into the 

design of supply chains23,24,25,26. These formulations exploit the variance reduction that is 

achieved when uncertain demands are centralized at few DCs, according to the risk pooling 

effect demonstrated by Eppen27. The benefits of centralization contrast with the risk 

diversification effect that becomes apparent when supply availability is considered uncertain. 

Snyder & Shen28 demonstrate that centralized supply chains are more vulnerable to the effect of 

supply uncertainty. 

The effect of unreliable supply in inventory management has been studied by several 

authors9,29,30,31. Qi et al.32 integrated inventory decisions into the supply chain design with 

unreliable supply. The main approach to address uncertainty in supply availability is to allocate 

safety stock at DCs to mitigate the risk of running out of stock. 

The FLP under the risk of disruptions was originally studied by Snyder & Daskin33.  They 

formulate a problem in which all candidate DCs have unlimited capacities and the same 

disruption probability. The model avoids the generation of scenarios by establishing customer 

assignments according to DC availability and levels of preference. The objective is to minimize 

the investment cost in DCs and the expected cost of transportation. Similar formulations that 

allow site-dependent disruption probabilities have also been developed34,35,36 together with 

approximation algorithms to solve them37. An extension that allows facility fortification 
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decisions to improve their reliability was introduced by Li et al.38 An alternative design criterion 

(p-robustness) that minimizes nominal cost and reduces the risk of disruptions was presented by 

Peng et al.39 

Recently, inventory management has been considered in the design of supply chains with risk 

of facility disruptions. Chen et al.40 include the expected cost of holding inventory into the FLP. 

This formulation, like all previous work, considers the capacity of the candidate DCs to be 

unlimited. A capacitated version of the FLP with disruptions that includes inventory 

management is formulated by Jeon41 as a two-stage stochastic programming problem. This 

formulation considers a fixed capacity for the candidate DCs.  

Stochastic programming has been used to address different types of uncertainty in supply chain 

design. Tsiakis et al.23 address the design of multi-echelon supply chains under demand 

uncertainty using stochastic programming. Salema et al.42 propose a stochastic programming 

formulation for the design of reverse logistic networks with capacitated facilities. Some authors 

have resorted to Sample Average Approximation (SAA)43,44 to estimate the optimal design of 

supply chains with large numbers of scenarios. Santoso et al.45 propose the use of SAA to 

estimate the optimal design of supply chains with uncertainty in costs, supply, capacity, and 

demand. Schütz et al.46 distinguish between short and long-term uncertainty in their stochastic 

programming formulation; the problem is solved by using SAA. Klibi & Martel47 propose 

various models for the design of resilient supply chains considering disruptions and other types 

of uncertainties. Their formulation approximates the optimal response strategy to disruptions; the 

solution of the supply chain design problem is estimated using SAA. 

The main contribution of this research for the design of resilient supply chains in comparison 

to the published literature is to include DCs capacity as a design decision. This extension allows 
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detailed modeling of the inventory management, its availability and cost. Additionally, the 

solution strategy developed can be used to obtain deterministic bounds on the optimal solution of 

large-scale supply chains. 

 

3. Problem statement 

The proposed supply chain design problem involves selecting DCs among a set of candidate 

locations, determining their storage capacity for multiple commodities, and establishing the 

distribution strategy. The objective is to minimize the sum of investment costs and expected 

distribution cost. Distribution costs are incurred during a finite time-horizon that is modeled as a 

sequence of time-periods. These costs include transportation from plant to DCs, storage of 

inventory at DCs, transportation from DCs to customers, and penalties for unsatisfied demands.  

The DC candidate locations are assumed to have an associated risk of disruption. The risk is 

characterized by a probability that represents the fraction of time that the potential DC is 

expected to be disrupted. Disruption probabilities of individual candidate locations are assumed 

to be known. For potential DC locations, the possible combinations of active and disrupted 

locations give rise to a discrete set of scenarios regardless of the investment decisions. The 

scenario probabilities are established during the problem formulation according to the probability 

of individual facility disruptions, which are assumed to be independent. However, the 

formulation easily accommodates correlation among disruption probabilities and more 

sophisticated approaches for the scenario generation48. 

The scenarios determine the potential availability of DCs. Actual availability depends on the 

realization of scenarios and the investment decisions. This property can be interpreted as an 

expression of endogenous uncertainty49,50,51 in which the selection of DC locations renders some 
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of the scenarios undistinguishable.  Fortunately, for the case of two-stage stochastic programs, 

the optimal cost of undistinguishable scenarios always turns out to be the same. In contrast to 

multi-stage stochastic programming formulations50, two-stage problems do not require 

conditional non-anticipativity constraints because there are no decisions to anticipate after the 

second stage. 

The distribution strategy implies establishing demand assignments in all possible scenarios. 

Assignments are modeled with continuous variables to allow customers to be served from 

different DCs simultaneously. Customer demands must be satisfied from active DCs according 

to the availability of inventory. Unsatisfied demands are subject to penalty costs. The expected 

cost of distribution is calculated from the distribution cost of each scenario according to its 

associated probability. 

DCs are assumed to follow a periodic review base-stock inventory policy with zero lead 

time52. With this policy, DCs place a replenishment order at the beginning of every time-period; 

the size of the order is adjusted to bring the inventory to the base-stock level. Therefore, the 

inventory at DCs is always found at the base-stock level at the beginning of time-periods. This 

policy implies that consecutive time-periods are identical and the distribution decisions are time 

independent. The inventory management problem with no fixed charges for transportation 

resembles the newsvendor model; the optimal inventory management strategy in these problems 

is known to follow a base-stock policy. The optimal base-stock level for each DC is equal to its 

storage capacity, which is an optimization variable. All cost coefficients are assumed to be 

known and deterministic. The investment costs in DCs are given by a linear function of capacity 

with fixed-charges. Transportation costs are given by linear functions of volume without fixed-
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charges. Storage costs are given by a linear function of the mean inventory. Penalties for 

unsatisfied demand are given by a linear function of volume. 

 

4. Formulation 

The design of a supply chain with risk of disruptions has the structure of a two-stage stochastic 

programming problem. First-stage decisions are related to the selection of DCs (xj) and their 

capacity (cj,k) for different commodities (k∊K) from the set of candidate locations (j∊J). Second-

stage decisions involve assigning (ys,j,i,k) the demands of customers (i∊I) according to the 

availability of DCs that is determined by the scenarios (s∊S). The discrete set of scenarios 

originates from disruptions at the DC candidate locations. Furthermore, penalties for unsatisfied 

demand render the recourse to be complete. The penalties are considered in the model by 

including an additional DC with infinite capacity, zero investment cost, and zero probability of 

being disrupted. This fictitious DC is labeled with subindex |J|. A complete list of the notation 

used throughout the paper can be found in the Nomenclature section. 

The objective function (1) minimizes the sum of investment at DCs, the expected cost of 

transportation from plant to DCs, the expected cost of transportation from DCs to customers, and 

the expected cost of storage at DCs. It should be noted that all time-periods (N) are assumed to 

be identical and that the cost of penalties is considered with the coefficients �𝐴𝑗,𝑘 + 𝐵𝑗,𝑖,𝑘� in the 

transportation terms indexed by |J|, which correspond to the fictitious DC. 

min � �𝐹𝑗 𝑥𝑗 + �𝑉𝑗,𝑘𝑐𝑗,𝑘
𝑘∈𝐾

�
𝐽∈𝐽\{|𝐽|}

 

(1) 

 +𝑁 �𝜋𝑠��� ���𝐴𝑗,𝑘 + 𝐵𝑗,𝑖,𝑘�𝐷𝑖,𝑘𝑦𝑠,𝑗,𝑖,𝑘
𝑖∈𝐼

�
𝑘∈𝐾

�
𝐽∈𝐽𝑠∈𝑆
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 � +𝑁�𝜋𝑠���𝐻𝑘  �𝑐𝑗,𝑘 −
1
2
�𝐷𝑖,𝑘𝑦𝑠,𝑗,𝑖,𝑘
𝑖∈𝐼

�
𝑘∈𝐾

�
𝐽∈𝐽𝑠∈𝑆

� 

The optimization problem is subject to the following constraints: 

s.t. � 𝑦𝑠,𝑗,𝑖,𝑘
𝐽∈𝐷𝐶

= 1 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (2) 

 𝑐𝑗,𝑘 − 𝐶𝑚𝑎𝑥𝑥𝑗 ≤ 0 ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (3) 

 �𝐷𝑖𝑦𝑠,𝑗,𝑖,𝑘
𝑖∈𝐼

− 𝑇𝑠,𝑗𝑐𝑗,𝑘 ≤ 0 ∀ 𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (4) 

 𝑥𝑗 ∈ {0,1}, 0 ≤ 𝑦𝑠,𝑗,𝑖,𝑘 ≤ 𝑇𝑠,𝑗, 𝑐𝑗,𝑘 ≥ 0 ∀ 𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (5) 

Constraints (2) ensure demand assignments for all scenarios. Constraints (3) bound the storage 

capacity of DCs according to the selection of locations. Constraints (4) ensure that customer 

assignments in every scenario are restricted by the inventory available at DCs; inventory 

availability at DCs depends on their capacity and the binary matrix (Ts,j) that indicates the 

realization of disruptions (Ts,j=0) in the scenarios.    

 

5. Illustrative example 

The proposed formulation is implemented to design a small supply chain with risk of facility 

disruptions. Additionally, the deterministic design that only considers the main-scenario (no 

disruptions) is obtained and its expected cost under the risk of disruptions is calculated. The 

implementations are based on the illustrative example presented by You & Grossmann26. The 

example includes 1 production plant, 3 candidate DCs, 6 customers, and a single commodity. A 

4th fictitious DC is also considered for the penalization of unsatisfied demands. The scenarios 

represent all possible combinations of disruptions at the 3 DC candidate locations. The parameter 

values for the problem are shown in Tables 1 and 2. The availability matrix (Ts,j) and the scenario 

probabilities are shown in Table 3. 
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Table 1. Model parameters. 

Parameter Value Units 

𝑁 365 periods 

D1 95 ton/period 

D2 157 ton/period 

D3 46 ton/period 

D4 234 ton/period 

D5 75 ton/period 

D6 192 ton/period 

F 100,000 $/DC 

V 100 $/ton 

H 0.01 $/(ton·period) 

A1 0.24 $/ton 

A2 0.20 $/ton 

A3 0.28 $/ton 

A4
† 15 $/ton 

 

Table 2. Transportation costs Bj,i ($/ton). 

 Customer 

DC  
 

1 2 3 4 5 6 

1 0.04 0.08 0.36 0.88 1.52 3.36 

2 2.00 1.36 0.08 0.10 1.80 2.28 

† Refers to the fictitious DC indexed by |J|, which is used to model penalties for unsatisfied 
demands. 
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3 2.88 1.32 1.04 0.52 0.12 0.08 

4† 10 10 10 10 10 10 

 

Table 3. Availability matrix (Ts,j) and scenario probabilities. 

Scenario DC availability Probability 

πs 1 2 3 4† 

1 1 1 1 1 0.795 

2 0 1 1 1 0.069 

3 1 0 1 1 0.033 

4 1 1 0 1 0.088 

5 0 0 1 1 0.003 

6 1 0 0 1 0.004 

7 0 1 0 1 0.008 

8 0 0 0 1 3.200*10-4 

 

The optimal designs obtained are presented in Figures 1 and 2. It can be observed that the 

deterministic and resilient models yield different designs. The deterministic design only selects 

two DC candidate locations whereas the resilient design selects all three candidate locations. 

  
Figure 1. Optimal deterministic design. Figure 2. Optimal resilient design. 
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A detailed comparison of the deterministic and resilient formulations and their corresponding 

results can be found in Table 4. The expected costs under the risk of disruptions are calculated by 

fixing the design variables to the optimal values obtained from each formulation and minimizing 

the distribution cost over the set of scenarios. Table 4 shows that the resilient formulation 

requires significantly higher investment cost ($419,850 vs. $279,900). The investment is 

compensated by lower transportation cost, and most importantly, by lower penalties ($54,244 vs. 

$674,703). The deterministic design has very poor performance in the scenarios with disruptions. 

This is caused by its lack of flexibility: it has no slack capacity to serve demands when 

disruptions occur. On the other hand, the resilient design has enough slack capacity to reallocate 

demands in the scenarios with disruptions. This strategy greatly decreases the expected cost of 

penalties. The comparison of the optimal costs obtained from both designs shows a difference of 

$484,648 when their performance is evaluated under the risk of disruptions. This comparative 

measure of performance is known as the value of the stochastic solution (VSS)14. 

 

Table 4. Results for the illustrative example. 

  Deterministic 
formulation 

Resilient 
formulation 

Expected costs 
under risk of 
disruptions 

Investment ($) 279,900 419,850 

Transportation to DCs ($) 70,098 68,971 

Transportation to customers ($) 59,029 54,683 

Storage ($) 1,593 2,927 

Penalties ($) 674,703 54,244 

Total ($): 1,085,323 600,675 

First-stage 
solution Storage capacity 298 / - / 501 400 / 400 / 400 
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Computational 
statistics 

Problem type MILP MILP 

No. of constraints 13 76 

No. of continuous variables 31 199 

No. of binary variables 3 3 

Solution time 0.058 s 0.127 s 

 

Further experimentation shows that the VSS is always sensitive to the penalty coefficients 

used, while the optimal design is insensitive over a wide range. If the penalty coefficients are 

sufficiently reduced, there is a threshold in which the optimal design changes. The change is the 

consequence of a new balance between investment and penalty costs. For the illustrative example 

presented, a reduction in the penalty coefficients to a third of its original value still yields the 

same optimal solution but reduces the VSS from $$484,648 to $70,991. Additional reductions of 

the penalty coefficients yield different optimal designs and smaller VSS.   

Table 4 also reveals that the size and complexity of the deterministic and the resilient 

formulations are quite different. The number of variables and constraints grow linearly with the 

number of scenarios. The size of the formulations influences the solution times. However, both 

formulations are linear and they only have a few binary variables. Therefore, the problems can 

be solved in short CPU times. 

 

6. Solution method 

The main challenge when considering supply chains of significant size is given by the number 

of scenarios; the possible combinations of disruptions grow exponentially with the number of 

candidate DCs. The total number of scenarios for the formulation is 2|J|-1, considering the 

fictitious DC that is always available. In this context, problems with a modest number candidate 
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DCs become intractable. In order to design large-scale supply chains, a number of different 

solution strategies must be developed.  

Initially, a new and redundant set of constraints is added to facilitate the solution of the mixed-

integer linear programming (MILP) problem. This set of tightening constraints is intended to 

improve the linear programming (LP) relaxation of the formulation. Additionally, a Benders 

decomposition algorithm that leverages problem structure is presented. Finally, a strategy to 

bound the cost of arbitrary subsets of scenarios is developed. This is useful to evaluate the 

relevance of scenario sets and quantify their worst-case impact in the objective function. 

6.1. Tightening the formulation 

The proposed formulation for resilient supply chain design has a poor LP relaxation. For 

instance, the LP relaxation of the illustrative example presented in the previous section yields a 

lower bound of $420,525, whereas the optimal MILP solution is $600,675. The computational 

effort required to solve MILP problems strongly depends on the tightness of the LP relaxation. In 

particular, large-scale MILPs with poor LP relaxation can take quite a long time since a large 

number of nodes has to be analyzed with the state-of-the-art branch-and-cut algorithms53. In 

order to improve the LP relaxation of the proposed formulation, a new set of constraints is added. 

In fact, Proposition 1 demonstrates that by adding the tightening constraints, the convex-hull of a 

subset of the constraints is obtained. 

Proposition 1: The convex hull of constraints (3), (4), and (5) is obtained by adding the 

following tightening constraint: 

𝑦𝑠,𝑗,𝑖,𝑘 − 𝑇𝑠,𝑗𝑥𝑗 ≤ 0 ∀ 𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (6) 

Proof 1: According to the argument from Geoffrion & McBride54 and decomposing the 

problem by DCs, constraints (3), (4), and (5) can be expressed in disjunctive form as follows: 
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�
𝑥𝑗 = 0 
𝑐𝑗,𝑘 = 0
𝑦𝑠,𝑗,𝑖,𝑘 = 0

� ∨

⎣
⎢
⎢
⎢
⎢
⎡

𝑥𝑗 = 1
0 ≤ 𝑐𝑗,𝑘 ≤ 𝐶𝑚𝑎𝑥

0 ≤ 𝑦𝑠,𝑗,𝑖,𝑘 ≤ 𝑇𝑠,𝑗

�𝐷𝑖,𝑘𝑦𝑠,𝑗,𝑖,𝑘
𝑖∈𝐼

≤ 𝑇𝑠,𝑗𝑐𝑗,𝑘
⎦
⎥
⎥
⎥
⎥
⎤

 (7) 

The hull reformulation is obtained by disaggregating variables xj, cj,k, and ys,j,i,k to obtain the 

following constraints: 

𝑥𝑗1 = 0 𝑥𝑗2 = 1 

(8) 

𝑐𝑗,𝑘
1 = 0 0 ≤ 𝑐𝑗,𝑘

2 ≤ 𝐶𝑚𝑎𝑥 

𝑦𝑠,𝑗,𝑖,𝑘
1 = 0 0 ≤ 𝑦𝑠,𝑗,𝑖,𝑘

2 ≤ 𝑇𝑠,𝑗 

 �𝐷𝑖,𝑘𝑦𝑠,𝑗,𝑖,𝑘
2

𝑖∈𝐼

≤ 𝑇𝑠,𝑗𝑐𝑗,𝑘
2  

The convex-hull is obtained from the convex combination of the disaggregated variables: 

𝑥𝑗 = (1 − 𝛼)𝑥𝑗1 + 𝛼𝑥𝑗2 

(9) 
𝑐𝑗,𝑘 = (1 − 𝛼)𝑐𝑗,𝑘

1 + 𝛼𝑐𝑗,𝑘
2  

𝑦𝑠,𝑗,𝑖,𝑘 = (1 − 𝛼)𝑦𝑠,𝑗,𝑖,𝑘
1 + 𝛼𝑦𝑠,𝑗,𝑖,𝑘

2  

0 ≤ 𝛼 ≤ 1 

Fixing values of 𝑥𝑗1 = 0, 𝑐𝑗,𝑘
1 = 0, and 𝑦𝑠,𝑗,𝑖,𝑘

1 = 0 yields:  

𝑥𝑗 = 𝛼 

(10) 𝑐𝑗,𝑘 = 𝑥𝑗𝑐𝑗,𝑘
2  

𝑦𝑠,𝑗,𝑖,𝑘 = 𝑥𝑗𝑦𝑠,𝑗,𝑖,𝑘
2  

Substitution in the disaggregated constraints yield: 

0 ≤
𝑐𝑗,𝑘

𝑥𝑗
≤ 𝐶𝑚𝑎𝑥 (11) 

0 ≤
𝑦𝑠,𝑗,𝑖,𝑘

𝑥𝑗
≤ 𝑇𝑠,𝑗 (12) 

�𝐷𝑖,𝑘
𝑦𝑠,𝑗,𝑖,𝑘

𝑥𝑗𝑖∈𝐼

≤ 𝑇𝑠,𝑗
𝑐𝑗,𝑘

𝑥𝑗
 (13) 
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0 ≤ 𝑥𝑗 ≤ 1 (14) 

Constraints (11), (12), (13), and (14) correspond exactly to constraints (3), (4), (6), and the 

continuous relaxation of (5).                  □ 

This MILP reformulation is known to yield the convex hull of the disjunctions55,56. The 

improvement in the tightness of the LP relaxation can be illustrated with the example presented 

in the previous section. The addition of the set of tightening constraints (6) to the formulation 

increases the lower bound of the LP relaxation from $420,525 to $589,403; this represents a 

significant improvement in a problem in which the optimal solution is $600,675. 

The addition of tightening constraints is important not only for a better LP relaxation of the full 

problem. The main advantage of this new set of constraints is that it can produce stronger cuts 

when Benders decomposition is used57. 

6.2. Multi-cut Benders decomposition 

Benders decomposition, also known as the L-Shaped method for stochastic programming58, is 

used to avoid the need of solving extremely large problems. This decomposition method finds 

the optimal value of the objective function by iteratively improving upper and lower bounds on 

the optimal cost. Upper bounds are found by fixing the first-stage variables and optimizing the 

second-stage decisions for the scenarios. Lower bounds are found in a master problem that 

approximates the cost of scenarios in the space of the first-stage variables. The convergence of 

the algorithm is achieved by improving the lower bounding approximation used in the master 

problem with the information obtained from the upper bounding subproblems. The main steps of 

the iterative procedure are shown in Figure 3. 
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Figure 3. Benders decomposition algorithm. 

The flow of information from subproblems to the master problem is determined by the dual 

multipliers of the subproblems. The classical approach is to generate one cut at every iteration. 

Some authors have proposed generating multiple cuts at every iteration59,60,61. Given the structure 

of the resilient supply chain design problem, there are several possibilities to derive cuts. After 

different computational experiments it was found that the most efficient strategy is to transfer as 

much information as possible from the subproblems to the master problem. Therefore, the 

proposed implementation adds individual cuts per scenario and commodity at every iteration.  

In the multi-cut framework, the subproblems which can be decomposed by scenario (s ϵ S) and 

commodity (k ϵ K), are formulated as follows: 

min 𝑁�𝜋𝑠 � �����𝐴𝑗,𝑘 + 𝐵𝑗,𝑖,𝑘 −
1
2
𝐻𝑘�𝐷𝑖,𝑘𝑦𝑠,𝑗,𝑖,𝑘

𝑖∈𝐼

�
𝑗∈𝐽

�
𝑘∈𝐾𝑠∈𝑆

 (15) 

 18 



s.t. � 𝑦𝑠,𝑗,𝑖,𝑘
𝐽∈𝐷𝐶

= 1 ∀ 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (16) 

 �𝐷𝑖,𝑘𝑦𝑠,𝑗,𝑖,𝑘
𝑖∈𝐼

− 𝑇𝑠,𝑗𝑐�̅�,𝑘
𝑖𝑡𝑒𝑟 ≤ 0 ∀ 𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (17) 

 𝑦𝑠,𝑗,𝑖,𝑘 − 𝑇𝑠,𝑗�̅�𝑗𝑖𝑡𝑒𝑟 ≤ 0 ∀ 𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (18) 

 𝑦𝑠,𝑗,𝑖,𝑘 ≥   0 ∀ 𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (19) 

where �̅�𝑗𝑖𝑡𝑒𝑟 and 𝑐�̅�,𝑘
𝑖𝑡𝑒𝑟 are the optimal first-stage solution of the master problem in the previous 

iteration (iter-1). 

The multi-cut master problem is formulated as follows: 

min � �𝐹𝑥𝑗 + �𝑉𝑗,𝑘𝑐𝑗,𝑘
𝑘∈𝐾

�
𝐽∈𝐽\{|𝐽|}

+ 𝑁 � �𝐻𝑘𝑐𝑗,𝑘
𝑘∈𝐾𝐽∈𝐽\{|𝐽|}

+ ��𝜃𝑠,𝑘
𝑘∈𝐾𝑠∈𝑆

 (20) 

s.t. 𝜃𝑠,𝑘 ≥�𝜆𝑠,𝑖,𝑘
𝑖𝑡𝑒𝑟 −�𝜇𝑠,𝑗,𝑘

𝑖𝑡𝑒𝑟 𝑇𝑠,𝑗𝑐𝑗,𝑘
𝑗∈𝐽𝑖∈𝐼

−��𝛾𝑠,𝑗,𝑖,𝑘
𝑖𝑡𝑒𝑟 𝑇𝑠,𝑗𝑥𝑗

𝑖∈𝐼𝑗∈𝐽

 ∀ 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾 (21) 

 𝑐𝑗,𝑘 − 𝐶𝑚𝑎𝑥𝑥𝑗 ≤ 0 ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (22) 

 𝑐𝑗,𝑘 ≥   0 ;   𝑥𝑗 ∈  �0,  1� ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (23) 

where 𝜆𝑠,𝑖,𝑘
𝑖𝑡𝑒𝑟 , 𝜇𝑠,𝑗,𝑘

𝑖𝑡𝑒𝑟 , 𝛾𝑠,𝑗,𝑖,𝑘
𝑖𝑡𝑒𝑟  are the optimal multipliers associated with set of constraints (16), (17), 

and (18) respectively in iteration iter. Constraint (21) provides the lower bounding 

approximation for the cost of satisfying demands of commodity k in scenario s (𝜃𝑠,𝑘). It should 

be noted that no feasibility cuts are considered since the problem has complete recourse. 

6.3. Strengthening the Benders master problem 

The multi-cut strategy for Benders decomposition can be very effective to obtain a good 

approximation of the feasible region in the master problem. However, depending on the number 

of scenarios and commodities in the instance to be solved, the master problem can become a hard 

MILP to solve because of the large number of cuts. In order to improve the lower bounds and 

guide the selection of the first-stage variables, the decisions of the main-scenario (scenario with 
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no disruptions) can be included in the master problem. This formulation of the master problem 

leverages the significant impact of the main-scenario in the final design given its comparatively 

high probability. The increase in the size of the master problem when main-scenario decisions 

are included is modest for problems with a large number of scenarios. The strengthened master 

problem minimizes the objective function (20) subject to constraints (21), (22), and (23) from the 

original master problem, and constraints (16), (17), (18), and (19) for the main-scenario. The 

constraints from the main-scenario subproblem are connected to the objective function through 

the following constraint: 

𝜃1,𝑘 ≥ 𝑁 𝜋1����𝐴𝑗,𝑘 + 𝐵𝑗,𝑖,𝑘 −
1
2
𝐻𝑘�𝐷𝑖,𝑘𝑦1,𝑗,𝑖,𝑘

𝑖∈𝐼

�
𝑗∈𝐽

 ∀ 𝑘 ∈ 𝐾 (24) 

6.4. Pareto-optimal cuts 

Benders subproblems that result from fixing the first-stage decisions are classical 

transportation problems. These problems are relatively easy to solve but their dual solution is 

known to be highly degenerate62. Therefore, it is very important to select at every iteration a set 

of optimal multipliers (𝜆𝑠,𝑖,𝑘
𝑖𝑡𝑒𝑟 , 𝜇𝑠,𝑗,𝑘

𝑖𝑡𝑒𝑟 , 𝛾𝑠,𝑗,𝑖,𝑘
𝑖𝑡𝑒𝑟 ) that produce a strong Benders cut. According to 

Magnanti & Wong57, the best multipliers for the implementation of Benders decomposition are 

those that produce non-dominated cuts among the set of optimal multiplies. These cuts are said 

to be pareto-optimal. Pareto-optimal cuts produce the smallest deviation in the dual objective 

function value when evaluated at a point (𝑥𝑗0, 𝑐𝑗,𝑘
0 ) in the relative interior of the convex hull of the 

first-stage variables. Such cuts can be obtained by solving the following linear programming 

problem: 

max ����𝜆𝑠,𝑖,𝑘 −�𝑇𝑠,𝑗𝑐𝑗,𝑘
0 𝜇𝑠,𝑗,𝑘

𝑗∈𝐽𝑖∈𝐼

−��𝑇𝑠,𝑗𝑥𝑗0𝛾𝑠,𝑗,𝑖,𝑘
𝑖∈𝐼𝑗∈𝐽

�
𝑘∈𝐾𝑠∈𝑆

 (25) 
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s.t. 𝑣∗��̅�𝑗𝑖𝑡𝑒𝑟, 𝑐�̅�,𝑘
𝑖𝑡𝑒𝑟� = ����𝜆𝑠,𝑖,𝑘 −�𝑇𝑠,𝑗𝑐�̅�,𝑙

𝑖𝑡𝑒𝑟𝜇𝑠,𝑗,𝑘
𝑗∈𝐽𝑖∈𝐼

−��𝑇𝑠,𝑗�̅�𝑗𝑖𝑡𝑒𝑟

𝑖∈𝐼

𝛾𝑠,𝑗,𝑖,𝑘
𝑗∈𝐽

�
𝑘∈𝐾𝑠∈𝑆

 (26) 

 
𝜆𝑠,𝑖,𝑘 − 𝐷𝑖,𝑘𝜇𝑠,𝑗,𝑘 − 𝛾𝑠,𝑗,𝑖,𝑘

≤ 𝑁 𝜋𝑠 �𝐴𝑗,𝑘 + 𝐵𝑗,𝑖,𝑘 −
1
2
𝐻𝑘�𝐷𝑖,𝑘 

⩝ s ϵ S, j ϵ J\{|J|}, i ϵ I, k ϵ K (27) 

 𝜆𝑠,𝑖,𝑘 ≤ 𝑁 𝜋𝑠�𝐴|𝐽|,𝑘 + 𝐵|𝐽|,𝑖,𝑘�𝐷𝑖,𝑘 ⩝ s ϵ S, j ϵ {|J|},  i ϵ I, k ϵ K (28) 

 𝜆𝑠,𝑖,𝑘 ≥   0 ;  𝜇𝑠,𝑗,𝑘 ≥   0;  𝛾𝑠,𝑗,𝑖,𝑘 ≥   0   ⩝ s ϵ S, j ϵ J,  i ϵ I, k ϵ K (29) 

 
where 𝑣∗��̅�𝑗𝑖𝑡𝑒𝑟 , 𝑐�̅�,𝑘

𝑖𝑡𝑒𝑟� is the optimal objective value of subproblems at iteration iter and 

�𝑥𝑗0, 𝑐𝑗,𝑘
0 � ∈ ��𝑥𝑗, 𝑐𝑗,𝑘�: 0 < 𝑥𝑗 < 1;  0 < 𝑐𝑗,𝑘 < 𝐶𝑚𝑎𝑥𝑥𝑗� (30) 

Notice that equation (26) constraints the multipliers to the set of optimizers of the 

subproblems; inequalities (27), (28), and (29) are the constraints of the dual formulation of 

subproblems. 

6.5. Bounding the impact of scenario subsets 

An important observation regarding the problem structure refers to the order of magnitude 

among different scenario probabilities. Scenarios with increasing number of disrupted locations 

have smaller probabilities. However, scenarios with the same number of disruptions occurring 

simultaneously have probabilities on the same order of magnitude. Therefore, the most intuitive 

way to divide the scenarios is to group them according to the number of simultaneous 

disruptions.  

For problems with a large number of scenarios, it is reasonable to select a subset of relevant 

scenarios (�̂�) for which the optimization problem can be solved, neglecting the effect of the 

scenarios with very small probabilities. However, solving this reduced problem does not provide 

much information about the optimal value of the objective function for the cases in which the 
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cost of penalties is very high. Therefore, it is of interest to derive deterministic bounds on the 

cost of the neglected scenarios.  

The calculation of the upper bound for the subset of neglected scenarios (�̃�) is based on the 

implementation of an assignment policy that is always feasible. The proposed policy works as 

follows. In any given scenario, the main-scenario assignment is attempted for each demand 

(Di,k): if the assignment is feasible (because the corresponding DC is active) the cost of satisfying 

the demand equals its cost in the main-scenario; otherwise, the demand is assumed to be 

penalized. The proportion in which these two costs are incurred depends on the conditional 

disruption probabilities of DCs (𝑃𝑗𝑆
�) in the neglected scenarios (�̃�). According to this policy, the 

upper bound for the cost of neglected scenarios subset (�̃�) can be calculated from equation (31): 

𝑈𝐵�̃� = 𝑁 𝛱�̃���1 − 𝑃𝑗�̃��
𝐽∈𝐽

�� ���𝐴𝑗,𝑘 + 𝐵𝑗,𝑖,𝑘�𝐷𝑖,𝑘𝑦1,𝑗,𝑖,𝑘
𝑖∈𝐼

+ 𝐻𝑘  �𝑐𝑗,𝑘 −
1
2
�𝐷𝑖,𝑘𝑦1,𝑗,𝑖,𝑘
𝑖∈𝐼

��
𝑘∈𝐾

� 

(31) 
 

+𝑁 𝛱�̃��𝑃𝑗�̃� �� ���𝐴|𝐽|,𝑘 + 𝐵|𝐽|,𝑖,𝑘�𝐷𝑖,𝑘𝑦1,𝑗,𝑖,𝑘
𝑖∈𝐼

+ 𝐻𝑘𝑐𝑗,𝑘�
𝑘∈𝐾

�
𝐽∈𝐽

 

where 𝛱𝑆� = ℙ�𝑆�� is the probability of the subset of neglected scenarios �̃�, 𝑃𝑗𝑆
� is the conditional 

probability of disruption at DC j in subset of scenarios �̃�, 𝑦1,𝑗,𝑖,𝑘 are the main-scenario 

assignments, and �𝐴|𝐽|,𝑘 + 𝐵|𝐽|,𝑖,𝑘� determine the unit cost for unsatisfied demand Di,k. Therefore, 

the first term in (31) corresponds to the cost of the feasible main-scenario assignments in subset 

(�̃�) and the second term gives an upper bound on penalties for infeasible assignments in subset 

(�̃�). 

The calculation of the conditional probability of disruption in scenario subset �̃� is based on the 

assumption that disruptions at DCs are independent from each other. Figure 4 shows the scenario 
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subsets and the relationship between their probabilities. Proposition 2 formalizes the procedure 

to calculate the conditional probability of disruption (𝑃𝑗�̃�) in a subset of neglected scenarios (�̃�). 

 
Figure 4. Scenario subsets and their probabilities. 

Proposition 2: For the  set of scenarios (S) generated by assuming independent DC disruption 

probabilities, the conditional probability of finding DC j disrupted in subset of scenarios �̃� can be 

calculated from the conditional probability of finding DC j disrupted in its complement (�̃� 𝐶) and 

the overall disruption probability of DC j in S. 

ℙ�𝑆𝑗|�̃� � =
ℙ�𝑆𝑗� − ℙ��̃� 𝐶� ∗ ℙ�𝑆𝑗|�̃� 𝐶�

ℙ��̃��
 (32) 

where 𝑆𝑗 denotes the scenarios in which DC j is disrupted, �̃� denotes the realization of a scenario 

𝑠 ⊂ �̃�  and �̃�𝐶 is its complement. 

Proof 2: By definition 

ℙ�𝑆𝑗|�̃�� =
ℙ�𝑆𝑗 ∩ �̃��
ℙ��̃��

 

(33) 

ℙ�𝑆𝑗|�̃�𝐶� =
ℙ�𝑆𝑗 ∩ �̃�𝐶�
ℙ��̃�𝐶�

 

Since �̃�and �̃�𝐶 are the complements of each other: 

ℙ�𝑆𝑗� = ℙ��𝑆𝑗 ∩ �̃�� ∪ �𝑆𝑗 ∩ �̃�𝐶�� (34) 

ℙ�𝑆𝑗� = ℙ��̃�� ∗ ℙ�𝑆𝑗|�̃��+ ℙ��̃�𝐶� ∗ ℙ�𝑆𝑗|�̃�𝐶� (35) 

It must be noted that equation (35) is equivalent to equation (32).             □ 
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Analogously, a lower bound on the cost of subset of scenarios �̃� can be calculated by assuming 

that all demands can be satisfied from the DC assigned in the main-scenario as presented in 

equation (36). 

𝐿𝐵�̃� =  𝑁 𝛱�̃���� ���𝐴𝑗,𝑘 + 𝐵𝑗,𝑖,𝑘�𝐷𝑖,𝑘𝑦1,𝑗,𝑖,𝑘
𝑖∈𝐼

+ 𝐻𝑘  �𝑐𝑗,𝑘 −
1
2
�𝐷𝑖,𝑘𝑦1,𝑗,𝑖,𝑘
𝑖∈𝐼

��
𝑘∈𝐾

�
𝐽∈𝐽

 (36) 

 

7. Implementation 

The proposed solution method is implemented in GAMS 24.1.1 for a large-scale and an 

industrial case study. All problems are solved using GUROBI 5.5.0 in an Intel Xeon CPU (12 

cores) 2.67 GHz with 16 GB of RAM. In order to speed-up the solution time, a number of 

problem specific properties can be leveraged.  

• Indistinguishability: The upper bound for a particular design is evaluated in the Benders 

subproblems. Scenarios that are only different from each other because of disruptions at 

locations that are not selected (�̅�𝑗𝑖𝑡𝑒𝑟 = 0) become indistinguishable. All the scenarios in these 

sets have the same optimal solution. Therefore, it is enough to solve one of the 

indistinguishable scenarios and use the solution for all the scenarios in the set. 

• Parallelization: The upper bounding subproblems are completely independent of each other 

with respect to scenarios and commodities. They can be solved in parallel using GAMS grid 

computing. The degree of parallelization must balance the time required to start the 

executions, solve the subproblems, and read the solutions. For the large-scale instances studied 

in this paper, the highest efficiency was found by solving for all commodities at the same time 

in individual scenarios. 

• Relevance of scenarios: The total number of scenarios grows exponentially with the number 

of candidate DCs. If all possible scenarios are considered, it might be impossible to find the 
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optimal design of industrial supply chains with the current computational technology. 

However, most of the scenarios that can be generated have very small probabilities. The 

magnitude of the scenario probabilities are directly related to the number of disruptions 

occurring at the same time. Therefore, it is easy to identify a reduced subset of relevant 

scenarios whose optimal solution is a good approximation of the full-space solution. 

• Full-space bounds: Bounds on the cost of scenarios excluded from the optimization problem 

can be calculated from (31) and (36). Upper and lower bounds on the full-space problem can 

be calculated by adding the bounds obtained for the relevant set of scenarios through Benders 

decomposition to the bounds obtained from (31) and (36) for scenarios excluded from the 

optimization problem. 

The sequence in which the proposed solution method is implemented is presented in Figure 5. 
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Figure 5. Implementation sequence of solution method. 

 

8. Large-scale example 

The solution strategy developed in the previous sections is used to solve a large-scale supply 

chain design problem with risk of disruptions at candidate DC locations. The parameters of the 

problem were generated randomly; they are presented in the Supporting information section. The 

problem includes: 1 production plant, 9 candidate locations for DCs, and 30 customers with 

demands for 2 commodities. The candidate DCs have disruption probabilities between 2% and 
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10%. The number of scenarios in the full-space problem is 29 = 512. The design is based on a 

time-horizon (N) of 365 days; in this time-scale, investment cost can be interpreted as annualized 

cost. 

The instance is used to illustrate the use of Benders decomposition, the benefits of 

strengthening the master problem, and the impact of solving a reduced subset of relevant 

scenarios. The selected relevant subset of scenarios includes scenarios with up to 4 simultaneous 

disruptions, for a total of 256 scenarios with probability ( 𝛱�̂�) equal to 99.99%. A comparison of 

the results for the full-space problem and the reduced problem is shown in Table 5. 

Table 5. Expected costs for the large-scale supply chain design obtained 

from full-space and reduced instances. 

Expected cost Full-space instance Reduced instance 

Investment ($): 2,194,100 2,194,100 

Transportation to DCs ($): 936,260 936,238 

Transportation to customers ($): 3,615,300 3,615,209 

Storage ($): 319,440 319,429 

Penalties ($): 160,347 159,615 

Total ($): 7,225,447 7,224,591 

Full-space upper bound: 7,225,447 7,225,898 

Full-space lower bound: 7,225,447 7,224,728 

 

The results show that solutions obtained for the full-space and the reduced problem are very 

similar. In particular, their optimal solutions imply the same design decisions and therefore the 

same investment cost. It is interesting to note that the largest difference in the results appears in 

the expected cost of penalties. This result is to be expected because the scenarios that are ignored 
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in the reduced problem are expected to be expensive in terms of penalties. Both problems were 

solved to 0% optimality tolerance using the proposed Benders decomposition algorithms. The 

solution obtained for the full-space problem establishes with certainty the optimal solution 

because all the scenarios are included in the optimization problem. The solution obtained for the 

reduced problem establishes a lower bound on the full-space optimum because it neglects the 

effect of some scenarios. When the bounds on the full-space problem are calculated from 

equations (31) and (36), it can be observed that they yield a very tight approximation of the full-

space solution with an optimality gap less than 0.1%. 

The size of the optimization instances and their solution times are shown in Table 6. 

Table 6. Instance sizes and solution times. 

Model statistic Full-space instance Reduced instance 

Number of constraints: 318,479 159,247 

Number of continuous variables: 309,263 154,639 

Number of binary variables: 9 9 

Number of multi-cut Benders iterations: 15 15 

Multi-cut Benders solution time: 281 s 151 s 

Strengthened multi-cut Benders solution time: 176 s 89 s 

Number of strengthened multi-cut Benders iterations: 8 8 

 

It can be observed that the reduced problem is almost half the size of the full-space problem in 

terms of constraints and continuous variables. This is explained by the reduction in the number 

of scenarios. The solution time for both instances reduces in a smaller proportion because the 

algorithms spend most of the time solving the MILP master problems. The use of the 

strengthened multi-cut master problem further reduces the solution time because it implies fewer 
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iterations as shown in Figure 6. The solution times for the full-space and the reduced instances 

without any decomposition strategy using GUROBI 5.5.0 are 3,349 s and 1,684 s, respectively. 

The much smaller solution times presented in Table 6 demonstrate that the proposed 

methodology is effective to solve large-scale instances of high computational complexity. 

 
Figure 6. Convergence of Benders algorithms for the full-space instance of the large-scale example. 

 

9. Industrial supply chain design 

The proposed model and solution method are used for the optimal design of an industrial 

supply chain with risk of disruption at candidate DCs. The problem includes: 1 production plant, 

29 candidate locations for DCs, 110 customers, and 61 different commodities. Not all the 

customers have demand for all commodities; there are a total of 277 demands for commodities in 

every time-period. The DC candidate locations have independent probabilities of being disrupted 

between 0.5% and 3%. The number of scenarios in the full-space problem is 229, approximately 
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537 million. The magnitude of penalties for unsatisfied demand is around 10 times the highest 

distribution cost among all possible assignments. The design is based on a time-horizon (𝑁) of 

60 months. The specific data for this instance is not disclosed for confidentiality reasons. 

Three subsets of scenarios are used for the design of the industrial supply chain. The first 

reduced problem only includes the main-scenario, and is equivalent to the deterministic 

formulation of the supply chain design problem. The second reduced problem considers the 

main-scenario and the scenarios with one disruption, giving rise to a subset of 30 scenarios. The 

third reduced problem includes the scenarios with up to 2 simultaneous disruptions, giving rise to 

a larger subset of 436 scenarios. Table 7 shows the problem sizes for the different instances. It 

can be observed that the third instance, in which the scenarios comprise 98.5% of the possible 

realizations, is a very challenging problem in terms of size. 

Table 7. Instances of the industrial design with increasing number of maximum 

simultaneous disruptions. 

Maximum 
simultaneous 
disruptions 

Number of 
scenarios in 
subset 

Probability 
of subset 

Number of 
constraints 

Number of 
continuous 
variables 

Number of 
discrete 
variables 

0 1 0.590 11,854 10,085 29 

1 30 0.905 304,261 251,191 29 

2 436 0.985 4,397,989 3,626,675 29 

 

The first instance was solved directly without decomposition. The second and third instances 

were solved using the strengthened multi-cut Benders decomposition. The results obtained are 

shown in Table 8.  
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Table 8. Upper and lower bounds for instances of the industrial design. 

 Reduced 
problem 0 

Reduced 
problem 1 

Reduced 
problem 2 

Optimal investment ($ 106) 18.47 18.77 21.01 

Number of selected DCs: 1 4 12 

Instance upper bound ($106): 34.09 48.68 53.66 

Instance lower bound ($106): 34.09 48.30 53.25 

Instance optimality gap: 0% 0.78% 0.77% 

Number of Benders iterations: - 4 6 

Solution time: 0.1 min 84.03 min 1,762 min 

Full-space upper bound ($ 106): 57.41 56.31 55.59 

Full-space lower bound ($ 106): 48.15 52.87 53.67 

 

From Table 8, it can be observed that the investment cost has a modest increase when the 

model includes a larger number of adverse scenarios (1, 30, 436). In this case, the formulation 

leverages the complexity of the supply chain network by decentralizing inventories at a relative 

low cost; i.e. from 1 to 12 DCs. This strategy avoids costly demand penalties and improves 

supply chain resilience. In contrast with the instance bounds, which are obtained only with 

subsets of scenarios (1, 30, 436), the full-space bounds obtained using equations (31) and (36) 

show the importance of considering a relevant subset of scenarios that provides a good 

representation of the full-space problem. The design obtained from Reduced problem 0 can only 

guarantee a full-space expected cost of $57.41 million that is 16.13% higher than the 

corresponding lower bound. On the other hand, the design obtained from Reduced problem 2 

yields a full-space upper bound of $55.59 million that in the worst case is 3.5% higher than the 

optimal cost. 
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The computational effort to solve the larger instances of the industrial supply chain design is 

very significant. Even after applying the methodology developed in the previous sections, it 

takes a long time to find satisfactory solutions. In this example, the number of scenarios and 

commodities implies a large number of cuts in the Benders master problem. Therefore, the 

complexity of the MILP master problem increases very rapidly with iterations. Fortunately, the 

algorithm converges after few iterations. 

 

10. Conclusions 

The design of resilient supply chains has been formulated as a two-stage stochastic 

programming problem to include the risk of disruptions at DC. The model allows finding the 

design decisions that minimize investment and expected distribution cost over a finite time-

horizon by anticipating the distribution strategy in the scenarios with disruptions. The allocation 

of inventory at DCs plays a critical role in supply chain resilience since it allows flexibility for 

the satisfaction of customers’ demands in different scenarios. This strategy contradicts the trend 

to centralize distribution centers and reduce inventories. The examples show that resilient supply 

chain designs can be obtained with reasonable increases in investment costs. These increased 

investments are compensated by lower transportation costs and better performance in adverse 

scenarios. 

The main challenge for the design of resilient large-scale supply chains originates from the 

exponential growth in the number of scenarios as a function of the number of DC candidate 

locations. Different strategies have been developed to exploit the problem structure. The 

importance of a tight MILP formulation has been illustrated. The multi-cut version of Benders 

decomposition has been adapted to leverage the particular problem structure. In order to reduce 
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the number of iterations, pareto-optimal cuts were added to the master problem for every 

commodity in each scenario. Additionally, including the assignment decisions of the main-

scenario in the Benders master problem was found to reduce the number of iterations and the 

computational time. For large-scale problems, the optimization over reduced number scenarios 

yielded good approximations of the optimal design. Furthermore, the implementation of a 

distribution policy in the scenarios with very small probabilities has allowed finding 

deterministic bounds on the performance of the supply chain.  

The solution method has been used to design a multi-commodity industrial supply chain. The 

economic benefits of considering resilience in supply chain design have been demonstrated. The 

implementation of resilient designs has the potential to improve supply chain performance and 

reduce their vulnerability to unexpected events. 
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Nomenclature 

Sets:  J:  index set of candidate locations j for DCs   

  I:  index set of customers i 

  K:  index set of commodities k 

  S:  index set of scenarios s 

Parameters: N:  number of time-periods in the design horizon 

 33 



  Di,k:  demand of customer i for commodity k per time-period 

  Hk:  unit holding cost of commodity k per time-period 

  Fj:  fixed investment cost of DC j 

  Vj,k:  variable capacity cost per unit of commodity k at DC j 

  Aj,k:  transportation cost per unit of commodity k from plant to DC j 

  Bj,i,k:  transportation cost per unit of commodity k from DC j to customer i 

  πs:  probability of scenario s 

  Cmax:  maximum capacity of DCs 

  Ts,j:  matrix indicating the availability of DC j in scenario s 

Variables: xj:  binary variable deciding whether DC at candidate location j is selected 

  cj,k:  storage capacity of commodity k in location j 

  ys,j,i,k: fraction of demand of customer i for commodity k that is satisfied from  

   location j in scenario s 
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Supporting information 

The parameters for the large-scale supply chain design example are presented in Tables 9, 10, 

11, 12, and 13, as well as in Equations (37) and (38). 

Table 9. Probability of disruption at candidate locations for DCs (j): 𝑃𝑗0. 

Candidate 
DC 

Probability of 
disruptions 

1 0.026 

2 0.100 

3 0.030 

4 0.018 

5 0.063 

6 0.090 

7 0.072 

8 0.031 

9 0.046 

 

Table 10. Cost coefficients for the large-scale example. 

Parameter Value Units 
𝑁 365 periods 
F 200,000 $/DC 
V 100 $/ton 
H 0.01 $/(ton·period) 
penalty 25 $/ton 

 

Table 11. Transportation cost for commodity 1 from plant to DCs. 
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Parameter Value 
[$/ton] 

A1,1 0.298 

A2,1 0.340 

A3,1 0.264 

A4,1 0.109 

A5,1 0.312 

A6,1 0.333 

A7,1 0.270 

A8,1 0.289 

A9,1 0.286 

 

The transportation cost for commodity 2 from plant to DCs (j) is given as a function of the 

transportation cost of commodity 1 as presented by equation (37): 

𝐴𝑗,2 = 1.15 𝐴𝑗,1 (37) 

 

Table 12. Demand for commodities at customers (i): Di,1 and Di,2. 

Customer Demand for 
commodity 1 

Demand for 
commodity 2 

1 243 133 

2 200 181 

3 194 176 

4 112 108 

5 236 136 

6 108 53 

 43 



7 114 247 

8 204 83 

9 119 71 

10 264 124 

11 264 90 

12 244 148 

13 130 118 

14 232 240 

15 204 234 

16 295 61 

17 230 198 

18 260 104 

19 191 135 

20 186 160 

21 265 239 

22 117 134 

23 127 247 

24 135 110 

25 178 190 

26 266 183 

27 261 158 

28 112 190 

29 180 183 

30 205 86 

 

Table 13. Transportation cost for commodity 1 from DCs (j) to customers (i) [$/ton]: Bj,i,1. 
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DC 
Customer 

1 2 3 4 5 6 7 8 9 10 

1 1.481 2.237 1.724 0.797 2.248 2.536 2.577 0.690 1.343 2.223 

2 2.139 1.293 1.614 1.746 2.727 1.109 1.963 0.635 0.905 2.370 

3 0.928 2.876 2.116 2.899 2.898 2.823 1.874 1.827 2.486 1.626 

4 2.265 0.586 2.273 1.351 1.868 1.375 2.793 2.448 1.278 0.710 

5 0.580 1.597 2.387 1.963 0.847 0.991 1.215 2.835 1.821 1.072 

6 1.192 1.454 1.190 1.060 0.873 1.128 2.393 0.825 0.914 2.783 

7 0.615 2.414 2.199 2.378 1.144 2.040 2.384 1.922 2.005 0.881 

8 0.743 2.488 2.138 1.138 2.602 1.683 1.451 1.673 1.157 2.565 

9 2.559 0.967 0.907 1.765 1.136 1.379 1.920 0.530 2.135 1.846 

 

DC 
Customer 

11 12 13 14 15 16 17 18 19 20 

1 2.990 0.711 0.840 1.505 2.862 1.104 1.383 1.868 0.703 2.544 

2 0.695 1.499 2.673 0.690 1.727 1.510 2.553 1.241 2.823 2.487 

3 1.607 1.150 1.949 1.100 1.723 0.741 0.539 2.362 2.439 2.111 

4 0.767 2.500 1.875 0.808 1.344 0.830 0.608 0.972 1.717 1.447 

5 2.905 1.579 0.862 0.960 2.750 2.855 0.922 2.217 1.590 2.529 

6 0.512 2.777 2.633 1.100 1.423 2.890 2.123 0.959 1.617 1.832 

7 2.437 0.955 2.055 1.543 0.778 1.938 2.329 1.421 1.266 1.377 

8 2.543 1.160 1.377 0.624 2.451 0.649 2.119 2.064 1.771 2.848 

9 2.672 0.864 1.783 2.757 1.474 1.087 1.627 2.451 1.777 2.690 

 

DC Customer 
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21 22 23 24 25 26 27 28 29 30 

1 1.875 1.065 2.949 1.054 0.573 1.803 2.713 0.767 0.995 2.514 

2 2.056 0.927 1.597 0.794 2.822 1.079 2.783 2.134 0.576 1.942 

3 1.968 1.069 0.778 1.242 2.326 1.722 2.490 1.735 2.360 0.957 

4 1.019 1.589 1.145 1.297 1.722 2.060 0.747 2.448 1.750 1.100 

5 1.253 1.278 1.522 1.560 1.946 2.198 1.155 2.288 1.700 2.716 

6 1.677 2.808 1.987 1.770 1.093 1.489 1.338 2.759 2.762 0.572 

7 1.076 1.576 1.156 0.714 1.647 1.419 2.199 2.727 2.025 1.725 

8 2.611 0.962 2.007 1.156 2.908 2.970 0.841 1.335 2.044 0.920 

9 0.987 2.762 2.278 2.503 1.867 0.594 2.303 2.247 2.649 2.947 

 

Finally, the transportation cost for commodity 2 from DCs (j) to customers (i) is given as a 

function of the transportation cost of commodity 1 as presented by equation (38): 

𝐵𝑗,𝑖,2 = 1.15 𝐵𝑗,𝑖,1 (38) 
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